



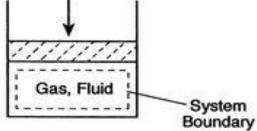
### **First stage-Medical physics**

# Chapter one /(Lec.1) General Concept in Thermodynamic

By Dr. Suha Shayal Abdul-Hassan

**Basrah University-college of Pharmacy** 

# **Definitions and Fundamental Ideas of Thermodynamics**


Thermodynamics deals with the quantitative relationship of interconversion of the various forms of energy. Any system, physical or chemical or even biological, can be considered as a thermodynamical system.

#### The Concept of a ``System"

A thermodynamic system is a quantity of matter of fixed identity, around which we can draw a boundary (see figure 1.1 for an example).

#### The system boundary

The boundaries may be fixed or moveable. Work or heat can be transferred across the system boundary. Everything outside the boundary is the surroundings.



# Types of thermodynamics system

#### **Isolated system**

a system is said to be isolated when there is no exchange of energy or matter with the surroundings.

#### **Closed system**

when there is an exchange of energy but not of matter then the system is said to be closed.

#### **Open system**

when both matter and energy can be freely exchanged with the environment, then the system is an open one.

### Properties of a system

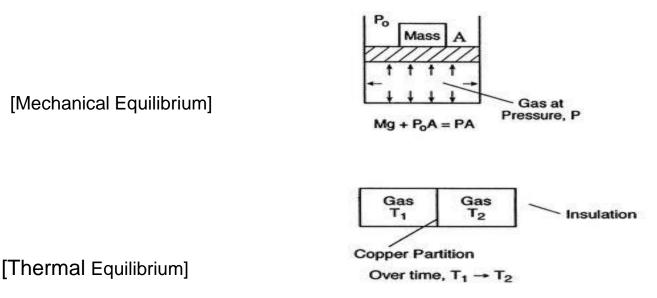
**Properties of a system** are a measurable characteristic of a system that is in equilibrium. Properties may be intensive or extensive.

**Intensive** – Are independent of the amount of mass: e.g: Temperature, Pressure, and Density, ....etc

**Extensive** – varies directly with the mass e.g: mass, volume, energy, enthalpy

**Specific properties** – The ratio of any extensive property of a system to that of the mass of the system is called an average specific value of that property (also known as intensives property)

For example:


specific volume 
$$= V/m = v$$
.

### The Concept of a ``State"

The **thermodynamic state** of a system is defined by specifying values of a set of measurable **properties** sufficient to determine all other properties. For fluid systems, typical properties are pressure, volume and temperature.

# The Concept of ``Equilibrium"

The state of a system in which properties have definite, unchanged values as long as external conditions are unchanged is called an equilibrium state.



# **Thermodynamics Equilibrium**•

No spontaneous change in macroscopic property (i.e. isolated system) A system in thermodynamic equilibrium satisfies:

1-mechanical equilibrium (No pressure gradient within the system and also between system & surroundings i.e.  $\delta P=0$ , or no unbalance force)

2-thermal equilibrium (No transfer of heat across the boundary of system when it is separated from universe by means of Diathermic wall- that allows the heat or  $\delta T=0$ )

3-chemical equilibrium. (No transfer of mass by any chemical process across the boundary of system i.e. diffusion and no unbalanced chemical reaction within the system)

# Equations of state

It is an experimental fact that two properties are needed to define the state of any pure substance in equilibrium or undergoing a steady or quasi-steady process

# The Concept of a ``Process"

•If the state of a system changes, then it is undergoing a **process**.

•At the end of the process if the properties have returned to their original values, the system has undergone a **cyclic process** or a **cycle**.

Note that even if a system has returned to its original state and completed a cycle, the state of the surroundings may have changed.

<u>Adiabatic process</u> - a process with no heat transfer into or out of the system.

<u>Isochoric process</u> - a process with no change in volume, in which case the system does no work.

<u>Isobaric process</u> - a process with no change in pressure. <u>Isothermal process</u> - a process with no change in temperature.

**Irreversible process** - a process that cannot return both the system and surrounding to their original conditions

**Reversible process** - it is defined as a process that, once having take place it can be reversed. In doing so, it leaves no change in the system or boundary.

**Cyclic process** - when a system in a given initial state goes through various processes and finally return to its initial state, the system has undergone a cyclic process or cycle.

### process path

is the series of states that a system passes through as it moves from an initial state to a final state.

• Work is a transfer of energy that can be used to change the height of a weight somewhere in the surroundings.

• Heat may be defined as energy in transit from a high temperature object to a lower temperature object.

• Internal energy is the microscopic energy in an object is . The internal energy may be increased by transferring energy to the object from a higher temperature (hotter) object - this is properly called heating.

### **Zeroth Law of Thermodynamics**

If two systems in thermal equilibrium with a third system then they are in thermal equilibrium with each other.